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Chapter 1

Introduction

1.1 Knowledge Representation in Artificial Intel-
ligence

The study of Knowledge Representation and Learning is central to artifi-
cial intelligence research. As defined by Russell and Norvig, an agent is
”anything that can be viewed as perceiving its environment through sensors
and acting upon that environment through actuators” [?]. The ability of an
agent to make informed decisions depends on how it represents and reasons
with knowledge.

1.1.1 Types of Knowledge

An intelligent agent needs various types of knowledge:

• Propositional constraints: Limitations on what can be true or false
(e.g., if block1 is on block2, then block2 cannot be on block1)

• Probabilistic dependencies: Rules that govern events (e.g., the
probability of a fair coin toss resulting in tails is 1/2)

• Action preconditions and effects: Requirements for actions and
their outcomes (e.g., to load a web page, an agent must be online)

• Perception interpretation: How to process sensor data (e.g., rec-
ognizing objects in images)

• Causal implications: Cause-effect relationships (e.g., blocks fall due
to gravity)

1.1.2 Models for Knowledge Representation

Several types of mathematical models are used to represent knowledge:

7



8 CHAPTER 1. INTRODUCTION

• Logical models: Using formal logic to express facts and relationships

• Probabilistic models: Capturing uncertainty using probability the-
ory

• Neural network models: Learning representations from data

• Hybrid models: Combining multiple approaches

In this course, we focus on:

• Logical models (propositional and first-order logic)

• Probabilistic models

• Statistical relational learning (combining logic and probability)

• Neuro-symbolic approaches (combining logic and neural networks)

1.2 Learning and Reasoning

Knowledge representation is intrinsically linked to both learning and rea-
soning:

• Learning involves acquiring or developing models that capture knowl-
edge, through:

– Manual specification

– Inductive logic programming

– Statistical machine learning

– Neural network training

• Reasoning involves using knowledge to make inferences, through:

– Logical deduction

– Probabilistic inference

– Forward/backward chaining

– Constraint satisfaction

The Challenge of Integration

A key insight in modern AI is that logic and probability theory have
addressed complementary aspects of knowledge representation:

• Logic: Ability to describe complex domains concisely in terms
of objects and relations

• Probability: Ability to handle uncertain information

Their unification holds enormous promise for AI [?].



Chapter 2

Propositional Logic

2.1 Introduction to Propositional Logic

Propositional logic, also known as propositional calculus or sentential logic,
is the simplest form of logic. It studies how propositions can be combined
and reasoned about using logical connectives.

2.1.1 What is a Proposition?

A proposition is a declarative statement that can be either true or false, but
not both. Examples of propositions include:

• ”Today is Monday.”

• ”The derivative of sinx is cosx.”

• ”Every even number has at least two factors.”

Non-examples (expressions that are not propositions):

• ”The dog of my girlfriend” (not a statement)

• ”When is the pretest?” (a question)

• ”Do your homework!” (a command)

2.2 Syntax of Propositional Logic

2.2.1 Alphabet

The alphabet of propositional logic consists of:

• Logical symbols: ¬ (negation), ∧ (conjunction), ∨ (disjunction), →
(implication), and ≡ (equivalence)

9



10 CHAPTER 2. PROPOSITIONAL LOGIC

• Non-logical symbols: A set P of propositional variables (typically
denoted by lowercase letters p, q, r, . . .)

• Separator symbols: Parentheses ”(” and ”)”

2.2.2 Well-Formed Formulas

The set of well-formed formulas (wffs) over a set P of propositional variables
is inductively defined as:

1. Every p ∈ P is a well-formed formula

2. If A is a well-formed formula, then ¬A is a well-formed formula

3. If A and B are well-formed formulas, then A ◦ B is a well-formed
formula, where ◦ ∈ {∧,∨,→,≡}

4. If A is a well-formed formula, then (A) is a well-formed formula

5. Nothing else is a well-formed formula

Example 2.2.1. Examples of well-formed formulas:

• P → Q

• P → (Q→ R)

• (P ∧Q)→ R

Examples of expressions that are not well-formed formulas:

• PQ (missing logical connective)

• (P → ∧((Q→ R) (incorrect syntax)

• P ∧Q→ ¬R¬ (incorrect placement of negation)

2.2.3 Reading Formulas

To properly interpret formulas, we need to understand operator precedence
and associativity:

Additionally, binary connectives are right-associative, meaning:

• a→ b→ c reads as a→ (b→ c)

• a ∧ b ∧ c reads as a ∧ (b ∧ c)

Parentheses can be used to override default precedence and associativity.
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Symbol Priority

¬ 1 (highest)
∧ 2
∨ 3
→ 4
≡ 5 (lowest)

Table 2.1: Operator precedence in propositional logic

2.2.4 Formulas as Trees

A formula can be represented as a tree, where:

• Leaves are propositional variables

• Internal nodes are logical connectives

Example 2.2.2. Consider the formula (A ∧ ¬B) ≡ (B → C). Its tree
representation is:

≡

∧

A ¬

B

→

B C

2.2.5 Subformulas

Definition 2.2.3. A subformula of a formula ϕ is defined as:

• ϕ is a subformula of itself

• If ϕ = ¬ψ, then ψ is a subformula of ϕ

• If ϕ = ψ1 ◦ψ2 where ◦ ∈ {∧,∨,→,≡}, then ψ1 and ψ2 are subformulas
of ϕ

• If ψ is a subformula of χ and χ is a subformula of ϕ, then ψ is a
subformula of ϕ

A proper subformula of ϕ is any subformula that is not ϕ itself.

In the tree representation, subformulas correspond to subtrees.
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2.3 Semantics of Propositional Logic

2.3.1 Interpretations

Definition 2.3.1. An interpretation (or truth assignment) is a function I :
P → {True,False} that assigns a truth value to each propositional variable.

For a set P with n propositional variables, there are 2n possible inter-
pretations.

Example 2.3.2. For P = {p, q, r}, there are 23 = 8 possible interpretations:

1. I1(p) = True, I1(q) = True, I1(r) = True

2. I2(p) = True, I2(q) = True, I2(r) = False

3. I3(p) = True, I3(q) = False, I3(r) = True

4. I4(p) = True, I4(q) = False, I4(r) = False

5. I5(p) = False, I5(q) = True, I5(r) = True

6. I6(p) = False, I6(q) = True, I6(r) = False

7. I7(p) = False, I7(q) = False, I7(r) = True

8. I8(p) = False, I8(q) = False, I8(r) = False

An alternative set-theoretic view: an interpretation I can be seen as
the subset of propositional variables that are assigned True. For example,
I = {p, r} means I(p) = True, I(q) = False, I(r) = True.

2.3.2 Satisfaction of Formulas

Definition 2.3.3. An interpretation I satisfies (or makes true) a formula
ϕ, denoted I |= ϕ, according to the following inductive definition:

• For p ∈ P , I |= p if and only if I(p) = True

• I |= ¬ϕ if and only if I ̸|= ϕ

• I |= ϕ ∧ ψ if and only if I |= ϕ and I |= ψ

• I |= ϕ ∨ ψ if and only if I |= ϕ or I |= ψ (or both)

• I |= ϕ→ ψ if and only if I ̸|= ϕ or I |= ψ (or both)

• I |= ϕ ≡ ψ if and only if I |= ϕ if and only if I |= ψ

Remark 2.3.4. The semantics of → (material implication) does not assert
causality. It only specifies that ϕ→ ψ is false when ϕ is true and ψ is false,
and true otherwise.



2.3. SEMANTICS OF PROPOSITIONAL LOGIC 13

Example 2.3.5. Let I = {p} (meaning I(p) = True, I(q) = False).

• I |= p (since p is assigned True)

• I ̸|= q (since q is assigned False)

• I |= ¬q (since I ̸|= q)

• I ̸|= p ∧ q (since I ̸|= q)

• I |= p ∨ q (since I |= p)

• I ̸|= p→ q (since I |= p but I ̸|= q)

• I |= q → p (since I ̸|= q)

2.3.3 Validity, Satisfiability, and Unsatisfiability

Definition 2.3.6. A formula ϕ is:

• Valid (or a tautology) if every interpretation satisfies it: ∀I : I |= ϕ.
Notation: |= ϕ

• Satisfiable if some interpretation satisfies it: ∃I : I |= ϕ

• Unsatisfiable (or a contradiction) if no interpretation satisfies it:
̸ ∃I : I |= ϕ

Example 2.3.7. • p ∨ ¬p is valid (true under any interpretation)

• p ∧ q is satisfiable (true when both p and q are true)

• p ∧ ¬p is unsatisfiable (never true under any interpretation)

2.3.4 Models of a Formula

Definition 2.3.8. For a formula ϕ, the set Models(ϕ) = {I | I |= ϕ} is the
set of all interpretations that satisfy ϕ.

Properties:

• If ϕ is satisfiable, then Models(ϕ) ̸= ∅

• If ϕ is valid, then Models(ϕ) = 2prop(ϕ) (all possible interpretations)

• If ϕ is unsatisfiable, then Models(ϕ) = ∅

• Models(¬ϕ) = 2prop(ϕ) \Models(ϕ)

• Models(ϕ ∧ ψ) = Models(ϕ) ∩Models(ψ)

• Models(ϕ ∨ ψ) = Models(ϕ) ∪Models(ψ)
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2.3.5 Logical Consequence

Definition 2.3.9. A formula ϕ is a logical consequence of a set of formulas
Γ, denoted Γ |= ϕ, if every interpretation that satisfies all formulas in Γ also
satisfies ϕ.

Example 2.3.10. • p |= p ∨ q (if p is true, then p ∨ q is true)

• p∨q, p→ r, q → r |= r (if at least one of p or q is true, and both imply
r, then r must be true)

• p→ q, p |= q (modus ponens)

Proposition 2.3.11. The following properties hold for logical consequence:

• Reflexivity: {A} |= A

• Monotonicity: If Γ |= A, then Γ ∪ Σ |= A

• Cut: If Γ |= A and Σ ∪ {A} |= B, then Γ ∪ Σ |= B

• Deduction theorem: If Γ, A |= B, then Γ |= A→ B

• Refutation principle: Γ |= A if and only if Γ ∪ {¬A} is unsatisfiable

2.4 Modeling in Propositional Logic

2.4.1 Representing Natural Language Statements

Translating natural language into propositional logic requires identifying
atomic propositions and connecting them with logical operators.

Natural Language Propositional Logic

”and”, ”but”, ”however”, ”moreover” ∧ (conjunction)
”or” (inclusive) ∨ (disjunction)
”either...or...but not both” (A ∨B) ∧ ¬(A ∧B)
”if...then...”, ”implies”, ”when” → (implication)
”only if” reverse implication (A only if B means A→ B)
”if and only if”, ”iff”, ”exactly when” ≡ (equivalence)
”not”, ”it is false that” ¬ (negation)
”unless” similar to ”if not” (A unless B means ¬B → A)

Table 2.2: Translation from natural language to propositional logic

Example 2.4.1. • ”If Sonia is happy and paints a picture, then Renzo
isn’t happy.” ⇒ (s ∧ p)→ ¬r

• ”If Sonia is happy, then she paints a picture.” ⇒ s→ p

• ”When Sonia paints a picture, she is happy.” ⇒ p→ s
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2.4.2 Cardinality Constraints

Special formulas can express constraints on the number of true propositions:

• At least k: Given a set of boolean variables X = {x1, x2, . . . , xn},
the constraint ”at least k propositional variables in X are true” is
formalized by: ∨

I⊆[n],|I|=k

∧
i∈I

xi

• At most k: Formalized as: ∧
I⊆[n],|I|=k+1

∨
i∈I
¬xi

• Exactly k: Conjunction of ”at least k” and ”at most k”

Example 2.4.2. For X = {a, b, c, d}:

• ”At least 2 variables are true” ⇒ (a ∧ b) ∨ (a ∧ c) ∨ (a ∧ d) ∨ (b ∧ c) ∨
(b ∧ d) ∨ (c ∧ d)

• ”At most 2 variables are true” ⇒ (¬a ∨ ¬b ∨ ¬c) ∧ (¬a ∨ ¬b ∨ ¬d) ∧
(¬a ∨ ¬c ∨ ¬d) ∧ (¬b ∨ ¬c ∨ ¬d)

2.5 Decision Procedures

Decision procedures are algorithms that determine properties of formulas,
such as:

• Model checking: Given I and ϕ, determine whether I |= ϕ

• Satisfiability: Given ϕ, determine whether ϕ is satisfiable

• Validity: Given ϕ, determine whether ϕ is valid

• Logical consequence: Given Γ and ϕ, determine whether Γ |= ϕ

2.5.1 Truth Tables

Truth tables enumerate all possible interpretations and evaluate a formula
under each.

Example 2.5.1. Truth table for p→ (q ∨ ¬r):
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p q r ¬r q ∨ ¬r p→ (q ∨ ¬r)
T T T F T T
T T F T T T
T F T F F F
T F F T T T
F T T F T T
F T F T T T
F F T F F T
F F F T T T

The formula is satisfiable but not valid (it’s false in row 3).

2.5.2 Conjunctive Normal Form (CNF)

Definition 2.5.2. A formula is in Conjunctive Normal Form (CNF) if it
is a conjunction of clauses, where each clause is a disjunction of literals. A
literal is either a propositional variable or its negation.

Example 2.5.3. (p ∨ ¬q ∨ r) ∧ (q ∨ r) ∧ (¬p ∨ ¬q) ∧ r is in CNF.

Every propositional formula can be converted to an equivalent formula
in CNF through the following steps:

1. Replace implications: A→ B ⇒ ¬A ∨B

2. Replace equivalences: A ≡ B ⇒ (¬A ∨B) ∧ (¬B ∨A)

3. Push negations inward (De Morgan’s laws):

• ¬(A ∨B)⇒ ¬A ∧ ¬B
• ¬(A ∧B)⇒ ¬A ∨ ¬B
• ¬¬A⇒ A

4. Distribute disjunction over conjunction:

• A ∨ (B ∧ C)⇒ (A ∨B) ∧ (A ∨ C)
• (A ∧B) ∨ C ⇒ (A ∨ C) ∧ (B ∨ C)

Remark 2.5.4. Converting a formula to CNF can cause exponential blowup
in formula size. Tseitin’s transformation provides a more efficient alter-
native by introducing new variables, producing an equisatisfiable (but not
equivalent) formula with only linear size increase.

2.5.3 The DPLL Algorithm

The Davis-Putnam-Logemann-Loveland (DPLL) algorithm is a complete,
backtracking-based search algorithm for deciding satisfiability of CNF for-
mulas.

Here, ϕ|l denotes the formula obtained from ϕ by setting l to true and
simplifying.
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Algorithm 1 DPLL Algorithm

1: function DPLL(ϕ, I)
2: I, ϕ← UnitPropagation(I, ϕ)
3: if {} ∈ ϕ then ▷ Empty clause means unsatisfiable
4: return Unsatisfiable
5: end if
6: if ϕ = {} then ▷ Empty formula means satisfiable
7: return I
8: else
9: select a literal l from some clause C ∈ ϕ

10: I ′ = DPLL(ϕ|l, I ∪ {l}) ▷ Try setting l to true
11: if I ′ ̸= Unsatisfiable then
12: return I ′

13: else
14: I ′ = DPLL(ϕ|¬l, I ∪ {¬l}) ▷ Try setting l to false
15: return I ′

16: end if
17: end if
18: end function

Algorithm 2 Unit Propagation

1: function UnitPropagation(I, ϕ)
2: while ϕ contains a unit clause {l} do
3: I, ϕ← I ∪ {l}, ϕ|l ▷ Set l to true and simplify
4: if {} ∈ ϕ then ▷ Found empty clause, unsatisfiable
5: return I, ϕ
6: end if
7: end while
8: return I, ϕ
9: end function
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2.5.4 Resolution

Resolution is a rule of inference that produces a new clause from two clauses
containing complementary literals.

Definition 2.5.5 (Resolution Rule).

A ∨ C,¬C ∨B
A ∨B

The resulting clause A ∨B is called the resolvent.

More generally, using set notation for clauses:

{A1, . . . , C, . . . , Am}, {B1, . . . ,¬C, . . . , Bn}
{A1, . . . , Am, B1, . . . , Bn}

Resolution provides a complete procedure for determining unsatisfiabil-
ity: A set of clauses Γ is unsatisfiable if and only if the empty clause {} can
be derived through a series of resolution steps.

Algorithm 3 Propositional Resolution

1: function PropositionalResolution(Γ)
2: while no new clauses are derivable do
3: Select clauses C1, C2 ∈ Γ and literal p such that p ∈ C1,¬p ∈ C2

4: Γ← Γ ∪ {(C1 ∪ C2) \ {p,¬p}}
5: if {} ∈ Γ then
6: return Unsatisfiable
7: end if
8: end while
9: return Satisfiable

10: end function

Example 2.5.6. Consider the clause set {{p}, {¬p, q}, {¬q, r}, {¬r}}:
{}

{r}

{¬p, r}

{¬p, q} {¬q, r}

{p}

{¬r}

The derivation of the empty clause proves the set is unsatisfiable.
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2.6 Maximum Satisfiability (MaxSAT)

2.6.1 The MaxSAT Problem

In many situations, not all constraints can be satisfied simultaneously, and
we need to find an assignment that satisfies as many constraints as possible.

Definition 2.6.1. Given a set of clauses {C1, . . . , Cn}, the Maximum Sat-
isfiability (MaxSAT) problem asks for an assignment that satisfies the max-
imum possible number of clauses.

2.6.2 Weighted MaxSAT

Definition 2.6.2. In Weighted MaxSAT, each clause Ci is associated with
a weight wi > 0. The goal is to find an assignment that maximizes the sum
of weights of satisfied clauses, or equivalently, minimizes the sum of weights
of unsatisfied clauses.

Variants of MaxSAT:

• Basic MaxSAT: All clauses have weight 1, no hard constraints

• Partial MaxSAT: Some clauses are hard (must be satisfied), others
have weight 1

• Weighted MaxSAT: All clauses have weights, no hard constraints

• Weighted Partial MaxSAT: Some clauses are hard, others have
weights

Hard constraints can be represented by assigning them infinite weight
or, practically, a weight greater than the sum of all soft constraint weights.

2.6.3 Algorithms for MaxSAT

Branch and Bound

Branch and Bound is an extension of DPLL that keeps track of the best
solution found so far (upper bound) and estimates a lower bound on the
cost of completing the current partial assignment.

Fu and Malik Algorithm

The Fu and Malik algorithm is a core-guided approach for MaxSAT that
iteratively identifies unsatisfiable cores (minimal unsatisfiable subsets) and
relaxes them.
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Algorithm 4 Branch and Bound for MaxSAT

1: function B&B(ϕ, ψ, I, IUB, UB)
2: I, ϕ← UnitPropagation(I, ϕ)
3: ψ ← ψ|I ▷ Update weighted clauses
4: LB ←

∑
w:{}∈ψ w ▷ Lower bound from empty clauses

5: if {} ∈ ϕ or UB ≤ LB then ▷ Hard constraint violated or cannot
improve

6: return IUB, UB
7: end if
8: if ϕ = {} and ψ contains only empty weighted clauses then
9: return I,

∑
(w:C)∈ψ w ▷ Complete solution with cost

10: else
11: select a literal l from some clause
12: I ′, UB′ ← B&B(ϕ|l, ψ|l, I ∪ {l}, IUB, UB)
13: I ′′, UB′′ ← B&B(ϕ|¬l, ψ|¬l, I ∪ {¬l}, I ′, UB′)
14: return I ′′, UB′′

15: end if
16: end function

Algorithm 5 Fu and Malik Algorithm for MaxSAT

1: function FuMalikMaxSAT(ϕ)
2: if SAT(ϕ) = Unsat then ▷ Hard constraints unsatisfiable
3: return (∞, ∅)
4: end if
5: cost ← 0
6: s ← 0
7: while True do
8: (st, ϕc)← SAT(ϕ) ▷ Try to satisfy all clauses
9: if st = Satisfiable then

10: return (cost, ϕ) ▷ Found optimal solution
11: end if
12: s ← s+ 1 ▷ New set of relaxation variables
13: As ← ∅ ▷ Clauses to relax
14: for soft clause Ci ∈ ϕc do
15: bsi ← new propositional variable
16: ϕ← ϕ \ {(Ci, 1)} ∪ {(Ci ∨ bsi , 1)} ▷ Relax clause
17: As ← As ∪ {i}
18: end for
19: ϕ← ϕ ∪ {(C,∞)|C ∈ CNF(

∑
i∈As

bsi = 1)} ▷ At most one
relaxation

20: cost ← cost +1
21: end while
22: end function
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2.7 Model Counting

2.7.1 The SAT Problem

Definition 2.7.1. The propositional model counting or SAT problem is:
given a propositional formula ϕ, compute the number of distinct truth as-
signments that satisfy ϕ.

Formally:

#sat(ϕ, P ) =
∑

I:P→{0,1}

I(ϕ)

where I(ϕ) = 1 if I |= ϕ and I(ϕ) = 0 otherwise.

Model counting has applications in probabilistic reasoning, statistical
relational learning, and other areas.

Example 2.7.2. For P = {p, q}:

• #sat(p ∧ q) = 1 (only one satisfying assignment)

• #sat(p ∨ q) = 3 (three satisfying assignments)

• #sat(p→ q) = 3 (three satisfying assignments)

• #sat(p ≡ q) = 2 (two satisfying assignments)

2.7.2 Properties of Model Counting

Proposition 2.7.3. Let ϕ be a propositional formula with variables in P :

• If ϕ is valid, #sat(ϕ) = 2|P |

• If ϕ is unsatisfiable, #sat(ϕ) = 0

• #sat(¬ϕ) = 2|P | −#sat(ϕ)

• If ϕ and ψ do not share variables, #sat(ϕ ∧ ψ) = #sat(ϕ) ·#sat(ψ)

• #sat(ϕ) = #sat(ϕ ∧ p) + #sat(ϕ ∧ ¬p) for any variable p

2.7.3 Algorithms for Model Counting

DPLL-Based Model Counters

Model counting algorithms often extend DPLL by keeping track of the num-
ber of solutions rather than just finding one.
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Algorithm 6 DPLL-Based Model Counting

1: function CountDP(ϕ, n)
2: if ϕ = {} then ▷ Empty set of clauses, tautology
3: return 2n ▷ All possible assignments satisfy
4: end if
5: if {} ∈ ϕ then ▷ Contains empty clause, unsatisfiable
6: return 0
7: end if
8: if ϕ contains unit clause {l} then
9: return CountDP(ϕ|l, n− 1) ▷ Unit propagation

10: else
11: Select variable p from ϕ
12: return CountDP(ϕ|p, n− 1) + CountDP(ϕ|¬p, n− 1)
13: end if
14: end function

Knowledge Compilation for Model Counting

Converting formulas to certain normal forms allows efficient model counting:

Definition 2.7.4 (d-DNNF). A formula is in deterministic decomposable
negation normal form (d-DNNF) if:

• Negation appears only in front of atoms (NNF)

• For each conjunction ϕ1∧ϕ2∧. . .∧ϕn, no two conjuncts share variables
(decomposable)

• For each disjunction ϕ1∨ϕ2∨. . .∨ϕn, each pair of disjuncts is mutually
unsatisfiable (deterministic)

For a d-DNNF formula, model counting can be done in polynomial time
by:

• For literals, count = 1

• For ϕ ∧ ψ, count = count(ϕ) × count(ψ) (due to decomposability)

• For ϕ ∨ ψ, count = count(ϕ) + count(ψ) (due to determinism)

2.7.4 Weighted Model Counting

Definition 2.7.5. Given a weight function w : 2P → R+ that assigns a posi-
tive real number to each interpretation, the weighted model counting problem
is to compute:

wmc(ϕ,w) =
∑
I|=ϕ

w(I)
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Weighted model counting is closely related to probabilistic inference: if
weights sum to 1, they can be interpreted as probabilities.

Example 2.7.6. Let w(I) = e
∑

p∈I v(p)+
∑

p/∈I v(¬p), where v assigns values
to literals. Then:

wmc(ϕ,w) =
∑
I|=ϕ

e
∑

p∈I v(p)+
∑

p/∈I v(¬p)

This can represent probabilistic models where Pr(I) = w(I)
Z(w) and Z(w) =∑

I w(I) is the partition function.
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Chapter 3

First-Order Logic

3.1 Introduction to First-Order Logic

First-order logic (FOL), also known as predicate logic, extends propositional
logic by allowing us to express properties of objects and relationships be-
tween objects. It introduces:

• Variables that range over objects in a domain

• Quantifiers that express properties about all objects or some objects
in the domain

• Functions that map objects to objects

• Predicates that express properties of objects or relationships between
objects

While propositional logic can only represent static facts, FOL can express
general rules and structural knowledge.

3.1.1 Limitations of Propositional Logic

Propositional logic cannot naturally express:

• Generalized statements about collections of objects (”All persons are
mortal”)

• Existential statements (”There exists a person who is a spy”)

• Relationships involving functions (”The father of Luca is Italian”)

Attempting to express these in propositional logic leads to unwieldy or
incomplete representations.

25
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3.2 Syntax of First-Order Logic

3.2.1 Alphabet

The alphabet of FOL consists of:

• Logical symbols:

– The logical constant ⊥ (false)

– Propositional connectives: ∧,∨,→,¬,≡
– Quantifiers: ∀ (universal), ∃ (existential)

– Variables: x1, x2, . . .

– The equality symbol = (optional)

• Non-logical symbols (signature Σ):

– Constants: c1, c2, . . .

– Function symbols: f1, f2, . . . each with an arity (number of argu-
ments)

– Predicate symbols: P1, P2, . . . each with an arity

Example 3.2.1. A signature for arithmetic might include:

• Constants: 0

• Functions: succ (unary), + (binary), × (binary)

• Predicates: < (binary), ≤ (binary)

3.2.2 Terms

Definition 3.2.2. Terms in FOL are recursively defined as:

• Every constant is a term

• Every variable is a term

• If t1, . . . , tn are terms and f is a function symbol with arity n, then
f(t1, . . . , tn) is a term

Example 3.2.3. Given constants a, b, variable x, and functions f (binary)
and g (unary):

• a, b, x are terms

• f(a, b), g(x) are terms

• f(g(x), a), f(a, f(b, g(x))) are terms

Definition 3.2.4. A ground term is a term that does not contain variables.
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3.2.3 Formulas

Definition 3.2.5. Atomic formulas are:

• P (t1, . . . , tn) where P is a predicate symbol with arity n and t1, . . . , tn
are terms

• t1 = t2 where t1 and t2 are terms (if equality is in the language)

Definition 3.2.6. Formulas are recursively defined as:

• Atomic formulas are formulas

• If ϕ and ψ are formulas, then ⊥, ϕ∧ψ, ϕ∨ψ, ϕ→ ψ, ¬ϕ, and ϕ ≡ ψ
are formulas

• If ϕ is a formula and x is a variable, then ∀x.ϕ and ∃x.ϕ are formulas

Example 3.2.7. • P (x) is a formula

• ∀x.(P (x)→ Q(x)) is a formula

• ∃x.(P (x) ∧ ∀y.R(x, y)) is a formula

3.2.4 Scope and Free Variables

Definition 3.2.8. The scope of a quantifier Q in Qx.ϕ is the formula ϕ.

Definition 3.2.9. A free occurrence of a variable x in a formula is an
occurrence not within the scope of a quantifier over x. A variable is free in
a formula if it has at least one free occurrence.

Example 3.2.10. In the formula ∀x.P (x) ∧Q(y):

• x is bound (not free)

• y is free

In the formula ∀x.(P (x, y)→ ∃y.R(x, y)):

• All occurrences of x are bound

• The occurrence of y in P (x, y) is free

• The occurrence of y in R(x, y) is bound

Definition 3.2.11. A formula is:

• Ground if it contains no variables

• Closed (or a sentence) if it contains no free variables
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3.3 Semantics of First-Order Logic

3.3.1 Interpretations

Definition 3.3.1. An interpretation I for a signature Σ is a pair ⟨∆, I⟩
where:

• ∆ is a non-empty set called the domain or universe

• I is an interpretation function that assigns:

– For each constant c, an element I(c) ∈ ∆

– For each function symbol f of arity n, a function I(f) : ∆n → ∆

– For each predicate symbol P of arity n, a relation I(P ) ⊆ ∆n

Example 3.3.2. Consider a signature with constants a, b, function f (unary),
and predicate P (binary). An interpretation might be:

• ∆ = {1, 2, 3}

• I(a) = 1, I(b) = 2

• I(f) = {1 7→ 2, 2 7→ 3, 3 7→ 1}

• I(P ) = {(1, 2), (2, 3), (3, 1)}

3.3.2 Variable Assignments

Definition 3.3.3. A variable assignment α for an interpretation I = ⟨∆, I⟩
is a function that maps variables to elements of ∆.

We write α[x 7→ d] for the assignment that is identical to α except that
it maps x to d.

3.3.3 Interpretation of Terms

Definition 3.3.4. Given an interpretation I = ⟨∆, I⟩ and a variable as-
signment α, the interpretation of a term t, denoted I(t)[α], is defined as:

• I(x)[α] = α(x) for a variable x

• I(c)[α] = I(c) for a constant c

• I(f(t1, . . . , tn))[α] = I(f)(I(t1)[α], . . . , I(tn)[α]) for a function appli-
cation
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3.3.4 Satisfaction of Formulas

Definition 3.3.5. An interpretation I with variable assignment α satisfies
a formula ϕ, denoted I |= ϕ[α], according to the following rules:

• I |= P (t1, . . . , tn)[α] iff (I(t1)[α], . . . , I(tn)[α]) ∈ I(P )

• I |= (t1 = t2)[α] iff I(t1)[α] = I(t2)[α]

• I ̸|= ⊥[α]

• I |= (ϕ ∧ ψ)[α] iff I |= ϕ[α] and I |= ψ[α]

• I |= (ϕ ∨ ψ)[α] iff I |= ϕ[α] or I |= ψ[α]

• I |= (ϕ→ ψ)[α] iff I ̸|= ϕ[α] or I |= ψ[α]

• I |= (¬ϕ)[α] iff I ̸|= ϕ[α]

• I |= (∀x.ϕ)[α] iff for all d ∈ ∆, I |= ϕ[α[x 7→ d]]

• I |= (∃x.ϕ)[α] iff there exists d ∈ ∆ such that I |= ϕ[α[x 7→ d]]

For a closed formula, satisfaction is independent of the variable assign-
ment, so we simply write I |= ϕ.

3.3.5 Models, Satisfiability, and Validity

Definition 3.3.6. An interpretation I is a model of a formula ϕ if I |= ϕ.

A formula ϕ is:

• Satisfiable if there exists an interpretation I such that I |= ϕ

• Valid (or a tautology) if for every interpretation I, I |= ϕ

• Unsatisfiable if it has no models

Definition 3.3.7. A formula ϕ is a logical consequence of a set of formulas
Γ, denoted Γ |= ϕ, if for every interpretation I and assignment α such that
I |= ψ[α] for all ψ ∈ Γ, we have I |= ϕ[α].

Example 3.3.8. • ∀x.P (x) |= P (c) (universal instantiation)

• P (c) |= ∃x.P (x) (existential generalization)

• ∀x.(P (x)→ Q(x)), ∀x.P (x) |= ∀x.Q(x) (universal modus ponens)
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3.4 Quantifier Properties and Equivalences

3.4.1 Quantifier Transformations

Proposition 3.4.1. The following equivalences hold:

• Quantifiers of the same type commute:

– ∀x.∀y.ϕ(x, y) ≡ ∀y.∀x.ϕ(x, y)
– ∃x.∃y.ϕ(x, y) ≡ ∃y.∃x.ϕ(x, y)

• Quantifiers of different types generally do not commute:

– ∀x.∃y.ϕ(x, y) ̸≡ ∃y.∀x.ϕ(x, y)

• Quantifier duality (De Morgan laws for quantifiers):

– ¬∀x.ϕ(x) ≡ ∃x.¬ϕ(x)
– ¬∃x.ϕ(x) ≡ ∀x.¬ϕ(x)

• Distribution over connectives:

– ∀x.(ϕ(x) ∧ ψ(x)) ≡ ∀x.ϕ(x) ∧ ∀x.ψ(x)
– ∃x.(ϕ(x) ∨ ψ(x)) ≡ ∃x.ϕ(x) ∨ ∃x.ψ(x)
– ∀x.(ϕ(x) ∨ ψ(x)) ̸≡ ∀x.ϕ(x) ∨ ∀x.ψ(x)
– ∃x.(ϕ(x) ∧ ψ(x)) ̸≡ ∃x.ϕ(x) ∧ ∃x.ψ(x)

• Quantifier absorption:

– ∀x.∃x.ϕ(x) ≡ ∃x.ϕ(x)
– ∃x.∀x.ϕ(x) ≡ ∀x.ϕ(x)

3.4.2 Prenex Normal Form

Definition 3.4.2. A formula is in prenex normal form if it has the form
Q1x1.Q2x2. . . . Qnxn.ϕ, where each Qi is either ∀ or ∃, and ϕ contains no
quantifiers.

Every FOL formula can be converted to an equivalent formula in prenex
normal form through the following steps:

1. Rename variables so each quantifier uses a unique variable

2. Eliminate implications and equivalences

3. Push negations inward using De Morgan laws and quantifier duality

4. Move quantifiers outward using the following equivalences (where x is
not free in ψ):
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• (∀x.ϕ) ∧ ψ ≡ ∀x.(ϕ ∧ ψ)
• (∀x.ϕ) ∨ ψ ≡ ∀x.(ϕ ∨ ψ)
• (∃x.ϕ) ∧ ψ ≡ ∃x.(ϕ ∧ ψ)
• (∃x.ϕ) ∨ ψ ≡ ∃x.(ϕ ∨ ψ)

3.5 First-Order Theories

3.5.1 Definition of Theories

Definition 3.5.1. A first-order theory T is a set of FOL formulas closed
under logical consequence: if T |= ϕ, then ϕ ∈ T .

Definition 3.5.2. Given a class of Σ-structures S, the theory of S, denoted
Th(S), is the set of all Σ-sentences that are satisfied by all structures in S:

Th(S) = {ϕ | ∀I ∈ S, I |= ϕ}

Definition 3.5.3. A set of formulas Ω is a set of axioms for a theory T if
for all ϕ ∈ T , Ω |= ϕ.

Definition 3.5.4. A theory is:

• Finitely axiomatizable if it has a finite set of axioms

• Recursively axiomatizable if it has a recursive set of axioms

3.5.2 Examples of First-Order Theories

Peano Arithmetic

Peano Arithmetic (PA) is a first-order theory of the natural numbers with
signature {0, succ,+,×} and axioms:

1. ∀x.0 ̸= succ(x)

2. ∀x, y.succ(x) = succ(y)→ x = y

3. ∀x.x+ 0 = x

4. ∀x, y.x+ succ(y) = succ(x+ y)

5. ∀x.x× 0 = 0

6. ∀x, y.x× succ(y) = (x× y) + x

7. The induction axiom schema: ϕ(0)∧∀x.(ϕ(x)→ ϕ(succ(x)))→ ∀x.ϕ(x)
for every formula ϕ with at least one free variable
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Other Examples

• Group theory

• Field theory

• Set theory

• Theories of specific data structures (e.g., lists, trees)

3.5.3 Knowledge Representation Tricks

• Closed World Assumption: Specifying that the domain contains
only the named objects:

∀x.x = a ∨ x = b ∨ . . . ∨ x = z

• Unique Name Assumption: Constants refer to distinct objects:

a ̸= b ∧ a ̸= c ∧ . . . ∧ y ̸= z

• Domain Cardinality: Specifying the exact number of elements in
the domain:

∃x1, . . . , xn.

∧
i<j

xi ̸= xj ∧ ∀x.
n∨
i=1

x = xi



3.6 Herbrand’s Theorem

3.6.1 Herbrand Universe

Definition 3.6.1. Given a signature Σ containing at least one constant, the
Herbrand universe ∆H is the set of all ground terms that can be constructed
from the constants and function symbols in Σ.

If Σ does not contain constants, we add a new constant (e.g., a) to form
the Herbrand universe.

Example 3.6.2. For Σ = {a, b, f( ), g( , )}:

∆H = {a, b, f(a), f(b), g(a, a), g(a, b), g(b, a), g(b, b),
f(f(a)), f(f(b)), f(g(a, a)), . . .}
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3.6.2 Herbrand Interpretations

Definition 3.6.3. A Herbrand interpretation for a signature Σ is an inter-
pretation I = ⟨∆H , H⟩ where:

• ∆H is the Herbrand universe

• H(c) = c for each constant symbol c

• H(f)(t1, . . . , tn) = f(t1, . . . , tn) for each function symbol f

• H(P ) ⊆ ∆n
H for each predicate symbol P of arity n

Definition 3.6.4. The Herbrand base HBΣ is the set of all ground atomic
formulas that can be formed using predicate symbols from Σ and terms from
∆H .

Theorem 3.6.5 (Herbrand’s Theorem). A universal formula ∀x1, . . . , xn.ϕ(x1, . . . , xn),
where ϕ is quantifier-free, is satisfiable if and only if it is satisfied by a Her-
brand interpretation.

This theorem allows us to restrict our search for models to Herbrand
interpretations when checking satisfiability of universal formulas.

3.6.3 Skolemization

Definition 3.6.6. Skolemization is a process that eliminates existential
quantifiers from a formula by replacing existentially quantified variables with
new function symbols.

The basic idea:

• For ∃x.ϕ(x), introduce a new constant c and replace the formula with
ϕ(c)

• For ∀x1, . . . , xn.∃y.ϕ(x1, . . . , xn, y), introduce a new function symbol f
and replace the formula with ∀x1, . . . , xn.ϕ(x1, . . . , xn, f(x1, . . . , xn))

Skolemization preserves satisfiability but not logical equivalence.

Example 3.6.7. Skolemizing ∀x.∃y.P (x, y) gives ∀x.P (x, f(x)) where f is
a new function symbol.

3.7 Resolution and Unification

3.7.1 Clausal Form

Definition 3.7.1. A clause is a disjunction of literals. In set notation, it
is represented as a set of literals.
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Every FOL formula can be converted to clausal form (a set of clauses)
through the following steps:

1. Convert to prenex normal form

2. Skolemize to eliminate existential quantifiers

3. Drop the universal quantifiers (all variables are implicitly universally
quantified)

4. Convert the matrix to conjunctive normal form

5. Separate the conjuncts into a set of clauses

3.7.2 Substitutions

Definition 3.7.2. A substitution σ is a finite set of replacements {x1/t1, . . . , xn/tn}
where each xi is a variable and each ti is a term different from xi.

Definition 3.7.3. The application of a substitution σ to a term or formula
ϕ, denoted ϕσ, is the term or formula obtained by simultaneously replacing
each occurrence of variable xi with the term ti.

Definition 3.7.4. The composition of substitutions σ and θ, denoted σ ◦ θ,
is the substitution that satisfies:

t(σ ◦ θ) = (tσ)θ

for all terms t.

Composition is associative but not commutative.

3.7.3 Unification

Definition 3.7.5. A substitution σ unifies terms s and t if sσ = tσ.

Definition 3.7.6. A substitution σ is more general than a substitution θ if
there exists a substitution λ such that θ = σ ◦ λ.

Definition 3.7.7. A most general unifier (MGU) of terms s and t is a
unifier that is more general than any other unifier of s and t.

Example 3.7.8. • The terms f(a, x) and f(a, b) are unifiable with MGU
{x/b}

• The terms f(x, g(x)) and f(h(y), z) are unifiable with MGU {x/h(y), z/g(h(y))}

• The terms f(x) and g(y) are not unifiable (different function symbols)

• The terms f(x) and f(g(x)) are not unifiable (occurs check fails)
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Algorithm 7 Robinson’s Unification Algorithm

1: function Unify(∆)
2: σ ← {}
3: while |∆σ| > 1 do
4: Pick a disagreement pair p in ∆σ
5: if no variable in p then
6: return ”not unifiable”
7: else
8: Let p = (x, t) with x being a variable
9: if x occurs in t then

10: return ”not unifiable” ▷ Occurs check
11: else
12: σ ← σ ◦ {x/t}
13: end if
14: end if
15: end while
16: return σ
17: end function

3.7.4 Resolution for First-Order Logic

The resolution rule for FOL extends the propositional version by incorpo-
rating unification:

Definition 3.7.9 (First-Order Resolution Rule).

C1 ∨ L,C2 ∨ ¬M
(C1 ∨ C2)σ

where σ is the MGU of literals L and M .

In set notation:

{A1, . . . , L, . . . , Am}, {B1, . . . ,¬M, . . . , Bn}
{A1, . . . , Am, B1, . . . , Bn}σ

if σ is the MGU of L and M .

Example 3.7.10. Resolving {P (f(x))} and {¬P (f(a)), Q(x)}:
• The MGU of P (f(x)) and P (f(a)) is {x/a}

• The resolvent is {Q(x)}{x/a} = {Q(a)}

Factoring Rule

Definition 3.7.11 (Factoring Rule).

C ∨ L1 ∨ . . . ∨ Ln
(C ∨ L1)σ

if σ is the MGU such that L1σ = . . . = Lnσ.
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Resolution as a Refutation Procedure

Resolution for FOL provides a complete refutation procedure:

• To prove that Γ |= ϕ, convert Γ ∪ {¬ϕ} to clausal form

• Apply resolution repeatedly to derive new clauses

• If the empty clause is derived, Γ |= ϕ; otherwise, Γ ̸|= ϕ

Example 3.7.12. To prove ∀x.∃y.¬(P (y, x) ≡ ¬P (y, y)):
Convert to clausal form:

• Negation: ∃x.∀y.(P (y, x) ≡ ¬P (y, y))

• Skolemization: ∀y.(P (y, a) ≡ ¬P (y, y)) where a is a Skolem constant

• Clausal form: {¬P (y, a),¬P (y, y)}, {P (y, y), P (y, a)}

Applying factoring to both clauses with {y/a}:

• {¬P (a, a)}

• {P (a, a)}

Resolving these clauses gives the empty clause {}, proving the formula.



Chapter 4

Statistical Relational
Learning

4.1 Introduction to Statistical Relational Learning

Statistical Relational Learning (SRL) combines relational representations
(like logic) with probabilistic reasoning to handle both structure and uncer-
tainty. It addresses limitations of traditional approaches:

• Classical logic cannot handle uncertainty

• Probabilistic models struggle with complex relational structures

SRL is motivated by real-world domains where:

• Relations between entities are important

• There is significant uncertainty

• Both statistical patterns and logical rules are needed

4.1.1 Unifying Logic and Probability

As noted by Russell [?], logic and probability theory have addressed com-
plementary aspects of knowledge representation:

• Logic: Describing complex domains in terms of objects and relations

• Probability: Handling uncertain information

SRL frameworks aim to bridge this gap through different approaches:

• Adding probability to logic (e.g., Probabilistic Logic Programming)

• Adding logical structure to probabilistic models (e.g., Markov Logic
Networks)
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• Building new formalisms that integrate both (e.g., Tensor Logic Net-
works)

4.2 Probabilistic Graphical Models

4.2.1 Introduction to Graphical Models

Probabilistic graphical models represent probability distributions using graphs,
where:

• Nodes represent random variables

• Edges represent probabilistic dependencies

The two main types are:

• Directed graphical models (Bayesian networks)

• Undirected graphical models (Markov random fields)

4.2.2 Bayesian Networks

Definition 4.2.1. A Bayesian network is a directed acyclic graph (DAG)
where:

• Each node represents a random variable Xi

• Each edge represents a direct dependency

• Each node Xi has a conditional probability distribution P (Xi|Parents(Xi))

The joint probability distribution is given by:

P (X1, . . . , Xn) =
n∏
i=1

P (Xi|Parents(Xi))

Example 4.2.2. Consider a simple Bayesian network with variables D (do-
ing work), F (finished work), G (getting tired), and H (having a rest):

D

F G

H

With conditional probability tables:



4.2. PROBABILISTIC GRAPHICAL MODELS 39

• P (D) = 0.5

• P (F |D = true) = 0.5, P (F |D = false) = 0.1

• P (G|D = true) = 0.7, P (G|D = false) = 0.2

• P (H|F = true, G = true) = 1.0, P (H|F = true, G = false) = 0.5,
P (H|F = false, G = true) = 0.4, P (H|F = false, G = false) = 0.0

4.2.3 Markov Random Fields

Definition 4.2.3. A Markov random field (MRF) is an undirected graphical
model where:

• Nodes represent random variables

• Edges represent symmetric dependencies

• The joint distribution is defined in terms of potential functions over
cliques

The joint probability distribution is given by:

P (X1, . . . , Xn) =
1

Z

∏
c∈C

ψc(Xc)

where:

• C is the set of cliques (fully connected subgraphs)

• ψc is a potential function for clique c

• Z =
∑

x1,...,xn

∏
c∈C ψc(Xc) is the partition function

4.2.4 Inference in Graphical Models

Inference tasks in graphical models include:

• Marginal inference: Computing P (Xi)

• Conditional inference: Computing P (Xi|E = e) where E is evidence

• Maximum a posteriori (MAP) inference: Finding argmaxX P (X|E =
e)

Exact inference is generally NP-hard, so approximate methods are often
used:

• Sampling methods (e.g., Gibbs sampling, MCMC)

• Variational methods (e.g., mean field, belief propagation)

• Loopy belief propagation
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4.2.5 Learning in Graphical Models

Learning in graphical models involves:

• Parameter learning: Estimating the conditional probability tables or
potential functions

• Structure learning: Determining the graph structure (which variables
are dependent)

Standard approaches include:

• Maximum likelihood estimation

• Bayesian approaches

• Structure search

4.3 Markov Logic Networks

4.3.1 Definition of Markov Logic Networks

Definition 4.3.1. A Markov Logic Network (MLN) is a set of pairs (Fi, wi)
where:

• Fi is a formula in first-order logic

• wi is a real-valued weight associated with Fi

MLNs provide a way to soften first-order logic: formulas don’t have to
be strictly true or false, but violations are penalized by weights.

4.3.2 Probability Distribution Defined by MLNs

An MLN defines a probability distribution over possible worlds:

P (X = x) =
1

Z
exp

(
m∑
i=1

wini(x)

)

where:

• X is the set of all ground atoms

• x is a specific truth assignment (possible world)

• ni(x) is the number of true groundings of formula Fi in world x

• Z is the partition function

Example 4.3.2. Consider an MLN with formulas:
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• w1 : ∀x, y.Friends(x, y)→ Friends(y, x) (symmetric friendship)

• w2 : ∀x, y.Friends(x, y)→ Likes(x, y) (friends like each other)

• w3 : ∀x, y.Likes(x, y)∧Likes(y, z)→ Likes(x, z) (transitivity of ”likes”)

The weights determine how strictly these rules are enforced. Higher
weights mean stronger constraints.

4.3.3 Inference in MLNs

Inference in MLNs typically involves:

• Grounding the network to create a Markov network

• Performing inference on the ground network

Common inference tasks include:

• Marginal inference: P (X = x|E = e) where E is evidence

• Most probable explanation (MPE): argmaxx P (X = x|E = e)

Inference algorithms for MLNs include:

• MCMC sampling

• Belief propagation

• MaxWalkSAT (for MPE inference)

4.3.4 Learning in MLNs

Learning in MLNs involves:

• Weight learning: Estimating weights for a fixed structure

• Structure learning: Learning both the formulas and their weights

Weight learning methods include:

• Maximum likelihood learning

• Maximum pseudo-likelihood learning

• Voted perceptron

Structure learning involves searching through the space of possible for-
mulas, guided by scoring functions that balance fit to data and model com-
plexity.
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4.4 Probabilistic Logic Programming

4.4.1 Introduction to Probabilistic Logic Programming

Probabilistic Logic Programming (PLP) extends logic programming lan-
guages (like Prolog) with probabilistic elements. It allows for:

• Representing uncertainty in logical rules

• Defining probability distributions over logical atoms

• Performing probabilistic inference in structured domains

4.4.2 Distribution Semantics

Most PLP languages follow the distribution semantics, where:

• Some facts are probabilistic (called probabilistic facts)

• Each probabilistic fact is true with a certain probability, independently
of other facts

• The truth values of the probabilistic facts induce a probability distri-
bution over possible worlds

• The probability of a query is the sum of probabilities of worlds where
the query is true

4.4.3 ProbLog

ProbLog is a probabilistic extension of Prolog that allows probabilistic facts:

0.3::edge(a,b).

0.7::edge(b,c).

0.9::edge(a,c).

path(X,Y) :- edge(X,Y).

path(X,Y) :- edge(X,Z), path(Z,Y).

query(path(a,c)).

In this example:

• Edges exist with certain probabilities

• A path exists if there’s a direct edge or a path through another node

• The query asks for the probability of a path from a to c
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4.4.4 Inference in Probabilistic Logic Programming

Inference methods in PLP include:

• Exact inference: Often based on knowledge compilation (converting
to d-DNNF)

• Approximate inference: Monte Carlo sampling, bounded approxima-
tions

• Lifted inference: Exploiting symmetries in the model

4.4.5 Learning in Probabilistic Logic Programming

Learning in PLP involves:

• Parameter learning: Estimating probabilities for probabilistic facts

• Structure learning: Learning the logical rules and their structure

Learning methods include:

• Maximum likelihood estimation

• Bayesian learning

• Structure search guided by score functions

4.5 Tensor Logic Networks

4.5.1 Introduction to Tensor Logic Networks

Tensor Logic Networks (TLNs) combine logical reasoning with neural net-
works through tensor representations. They aim to:

• Represent symbolic knowledge in a differentiable form

• Enable end-to-end learning of logical rules and neural representations

• Bridge symbolic and subsymbolic AI

4.5.2 Key Components of TLNs

TLNs typically consist of:

• Symbol embeddings: Vector/tensor representations of entities and
predicates

• Logical operators: Differentiable implementations of logical connec-
tives
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• Grounding mechanism: Mapping logical expressions to tensor op-
erations

• Training procedure: Learning embeddings and logical weights

4.5.3 Inference and Learning in TLNs

Inference in TLNs involves:

• Computing truth values of formulas through tensor operations

• Propagating gradients through logical operations

• Aggregating results across multiple groundings

Learning includes:

• Learning entity and predicate embeddings

• Learning weights for logical rules

• End-to-end optimization through gradient descent



Chapter 5

Neuro-Symbolic Integration

5.1 Introduction to Neuro-Symbolic AI

Neuro-symbolic AI aims to combine the strengths of neural networks and
symbolic reasoning systems:

• Neural networks excel at pattern recognition, learning from data, and
handling uncertainty

• Symbolic systems excel at explicit knowledge representation, inter-
pretability, and logical reasoning

The goal is to create systems that can both learn from data and reason
with explicit knowledge.

5.1.1 Complementary Strengths

Neural networks and symbolic systems have complementary strengths and
weaknesses:

Dimension Neural Networks Symbolic Systems

Learning from data Strong Weak
Dealing with high-dimensional data Strong Weak
Robustness to exceptions Strong Weak
Data efficiency Weak Strong
Explainability Weak Strong
Common-sense knowledge Weak Strong
Complexity of inference Strong Weak

Table 5.1: Complementary strengths of neural and symbolic approaches
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5.2 Approaches to Neuro-Symbolic Integration

5.2.1 Neural-Symbolic Cycle

The neural-symbolic cycle describes the interaction between neural and sym-
bolic components:

• Symbols to neurons: Encoding symbolic knowledge in neural networks

• Neural learning: Learning from data using neural networks

• Neurons to symbols: Extracting symbolic knowledge from neural net-
works

• Symbolic reasoning: Performing logical inference with extracted knowl-
edge

5.2.2 Integration Architectures

Various architectures have been proposed for neuro-symbolic integration:

• Logic as constraints: Using logical formulas to constrain neural
network outputs

• Differentiable logic: Implementing logical operations in a differen-
tiable manner

• Neural-guided search: Using neural networks to guide symbolic
search

• Hybrid architectures: Combining neural and symbolic modules in
a larger system

5.2.3 Examples of Neuro-Symbolic Systems

• Neural Theorem Provers: Neural networks that guide proof search

• DeepProbLog: Integrating neural networks with probabilistic logic
programming

• Logical Neural Networks: Networks where neurons correspond to
logical predicates

• NeuralLP: Learning logic programs through differentiable operations
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5.3 Challenges and Future Directions

5.3.1 Current Challenges

• Scalability: Handling large symbolic knowledge bases and neural net-
works

• Representation: Developing shared representations for neural and
symbolic components

• Learning: Effectively learning from both data and symbolic knowl-
edge

• Reasoning: Maintaining sound reasoning while incorporating uncer-
tainty

• Explainability: Making neuro-symbolic systems interpretable

5.3.2 Future Directions

• Large-scale neuro-symbolic systems: Scaling to real-world prob-
lems

• Multimodal reasoning: Integrating text, vision, and other modali-
ties

• Continual learning: Updating knowledge over time

• Neuro-symbolic architectures: Developing new integration pat-
terns

• Applications: Applying neuro-symbolic methods to practical prob-
lems
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